Producing Nuclear Recoils

Coherent Neutrino-Nucleus Scattering Workshop 7 December 2012 Livermore, CA

Tenzing H.Y. Joshi

LLNL-PRES-705033-DRAFT

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Outline

- The need to characterize detector materials
- Mechanisms for producing nuclear recoils
- Considerations for experimental design
- Two experimental designs for LAr
 - Collimated & filtered ⁷Li(p,n)⁷Be
 - Nuclear resonance fluorescence (NRF)

We need to characterize detector materials

- We must understand the response of detector materials to the CNNS signal
 - Validation of candidate materials
 - Detector response functions
 - Appropriate scaling of detectors
 - Backgrounds

$$\frac{d\sigma}{d(\cos\theta)} = \frac{G^2}{8\pi} [Z(4\sin^2(\theta_w) - 1) + N]^2 E_v^2 (1 + \cos\theta)$$

$$E_r = \frac{E_v^2 [1 - \cos(\theta)]}{M_{nucleon} A}$$

$$\langle E_r \rangle = 716eV \frac{(E_v / MeV)^2}{A}$$

Average recoil energy for several neutrino energies (eV)				
	1.44 MeV	5 MeV	30 MeV	
Si	50	640	23000	
Ar	35	450	16000	
Ge	20	250	9000	
Xe	10	130	4700	

CNNS acts on the nucleus and so must we

Traditional

- Neutron scatter
 - Mono-energetic
 - Filtered
 - TOF
 - Tagged
 - End-point
 - Spectrum
- Radiative capture
 - Thermal neutron source
 - Cooperative nuclear structure
- Inelastic neutron scatter
 - Shoulder on gamma peak

Non-traditional

- Photo-nuclear scatter
 - Rayleigh
 - Delbruck
 - Thomson
 - NRF
- Charged particle scatter

There is no silver bullet

- Target nuclei and neutrino source define energy range
- Separate detectors likely built for material characterization
 - Deployed detectors require comprehensive shielding
 - Characterization detectors need radiation to penetrate
- Characterization must compliment detector design
 - Cross-sections, attenuation, multiple scattering, etc...
- Different detector technologies, different geometries, different concerns
 - Self shielding, room returns, etc...

Two experiments for our LAr detector

- ⁷Li(p,n)⁷Be, collimated & filtered
 - Exploiting near-threshold kinematics
 - Utilizing "interference notches" in (n,el) crosssections
 - Barbeau et al. NIMA 2007
 - 73 keV & 24 keV neutrons
 - End-point and tagged

- Nuclear Resonance Fluorescence (NRF)
 - Several candidate states in ⁴⁰Ar
 - Sub-keV accessible in detail
 - T.H.Y. Joshi NIMA 2011

⁷Li(p,n)⁷Be near-threshold kinematics

Using near-threshold kinematics we can control maximum neutron energy

Taking advantage of nuclear data we selectively transmit neutrons through interference dips in scattering x-sections

The 73 keV notch in ⁵⁶Fe was selected to target the lower energy portion of the (n,el) resonance in ⁴⁰Ar

Expected thick Li performance 1.93 MeV protons at 1 µA

Thin Li target would further improve this design

Dip in 73 keV transmission is a result of scattering by ⁵⁴Fe

Expected thick Li performance 1.93 MeV protons at 1 µA

Without filtering near-threshold reaction combined with angular tuning can produce a 'shoulder' but multiple scattering and detector response make this undesirable

Collimating/filtering setup deployed at CAMS

Photo-nuclear scatter as a source of nuclear recoils

- Act like a neutrino
 - Neutral
 - Massless
 - 1-10 MeV Similar to reactor neutrinos
- Utilize resonant absorption to access benefits of photo-nuclear scatter (NRF)
 - Cross-sections are very large
 - Resonantly scattered gammas can be tagged in spectrometers
- Photo-nuclear scatter (Delbruck, Rayleigh, Tompson)
 - Much smaller cross-sections
 - Could be viable for higher Z nuclei

30-150 degree photonuclear recoil energies (eV)					
	3 MeV	6 MeV	9 MeV		
Si	46-640	180-2600	415-580		
Ar	32-450	130-1800	290-4000		
Ge	18-250	72-1000	160-2200		
Xe	10-130	40-530	85-1200		

NRF as a source of nuclear recoils

Identifying appropriate states

- Transition energy
 - 3-10 MeV
- E1 (or M1) transition
- Branching to G.S.
 - ~100%
- Short lifetime / large width
 - т=ћ/Г
- No or few neighboring states
- Width of the resonance, Γ
 - At least 1 lifetime before scatter on neighboring atom
 - $\Gamma \ge \frac{10(\hbar c)E_{\gamma}}{Mc^2 * d}$

	4.769 MeV	9.503 MeV
Јπ	1-	1-
Г	0.82 eV	7.9 eV
G.S. Branch	100%	89%
Т	5.04 fs	0.52 fs
$V_{ m recoil}$	0.38 Å/fs	0.77 Å/fs
S/B	3	730
σ	405 eV barn	587eV barn

Probing the sub-keV in Argon

Recoil Energy of ⁴⁰Ar as a Function of Fluorescence Angle

Fission neutrino regime can be characterized

Hagmann and Bernstein. IEEE Trans. on Nucl. Sci., 51, 2151, 2004.

Gamma-tagging is needed to identify events

- Required to identify an event and recoil energy
 - Require moderate energy resolution
 - Reasonable stopping power to increase efficiency
- False triggers and backgrounds will be low (at reasonable angles)
 - Fluoresced gammas have incident gamma energy
 - Compton scatters are very forward peaked at MeV energies
 - Compton scattered photons are well below beam energy
 - Collimating the field of view can reduce pileup and elastic photon scatters from inactive regions

High Intensity Gamma-ray Source

- Duke Free Electron Laser Laboratory
- γ-Production: Compton backscatter
- Commissioned in 2007
- Polarization: horizontal and circular

- High Resolution Mode
 - Two asymmetric e⁻ bunches
 - ~1% Energy resolution
 - ~2x10⁵ γ/sec at 4.769 MeV
 - 2.79 MHz collision frequency

Experimental challenges of NRF

- Experimental facilities are limited
- Backgrounds and noise
 - With current high energy photon sources the majority of incident photons are non-resonant
 - High rate of high energy Compton and Pair Production
 - Identification of these high energy events is easy, recovering quickly is difficult and
- Gamma-tagging array

Conclusions

- Producing controlled nuclear recoils in sensitive detectors is necessary to characterize CNNS target materials
- There are many ways to produce nuclear recoils, finding the best approach for your detector technology may not be immediately obvious
- We have proposed NRF as a source of sub-keV nuclear recoils in Argon
- We have designed and built a collimated & filtered ⁷Li(p,n) neutron source – currently being characterized

Future Work

- Characterize ⁷Li(p,n)⁷Be neutron source with new thin Li target
- Measure ionization yield of few keV nuclear recoils in liquid argon
- Pursue possible application of the NRF technique for argon and other targets

**Acknowledgements

- Prof. Rick Norman
- LLNL, Penn State, Liverpool collaborators
- Lawrence Scholars Program
- DHS grant ????

Verifying accelerator calibration

- Si-diode detector mounted on translation stage
- ²²⁶Ra source mounted across from detector
- Calibrated detector immediately before and after measurement of proton beam

Correcting the terminal potential

- Measured very low current of protons at CAMS with calibrated Sidetector
- Observed 15 keV offset in terminal potential of accelerator

2100

2150

2200

2250

2000

2050

1.774 MeV protons incident on Si detector

